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AbItract-This paper examines the asymmetric problem related to the harmonic oscillations of a rigid
circular disc inclusion embedded in bonded contact with an isotropic elastic medium of infinite extent. The
analysis of the problem is reduced to the solution of a single Fredholm integral equation of the second kind
which is solved in an appropriate maMer. The dynamic rotary stilfnesses are developed for a range of mass
ratios and frequencies of practical interest.

I. INTRODUCTION

The class of problems which deals with the dynamic response of a rigid
circular foundation resting on the surface of an elastic halfspace has received considerable
attention. Results of such investigations have been particularly instrumental in improving the
dynamic modelling of soil-structure interaction problems. Detailed accounts of these develop­
ments together with references to further work are given in the articles by Bycroft(l], Awojobi
and Grootenhuis[2J, Gladwell[3J, Thomas[4J, Luco and Westmann[5J and Richart et al.[6].
Further investigations relating to the dynamic behaviour of a rigid circular foundation resting
on an elastic layer, a stratified medium and a non-homogeneous elastic medium are reported by
Gladwell{7], Keer et al.[8J and Awojobi[9], respectively.

As is evident, a majority of these investigations concentrate on the dynamic behaviour of a
disc resting on the surface of an elastic halfspace. The category of problems in which the rigid
disc or inhomogeneity is embedded within the elastic medium has received only cursory
attention. For example, problems related to rectilinear and torsional oscillations of a rigid
sphere embedded in an elastic infinite space was examined by Chadwick and
Trowbridge[IO,Il]. Kanwal(12J and Williams[13] have examined the application of matched
asymptotic expansion techniques to the analysis of rectilinear oscillations of an embedded

rigid grculor disc inclusion
I moss m)

Fig. 1. Geometry of the embedded inclusion.
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inclusion. More recently, Datta and Kanwal[14] have employed singularity methods to examine
the problem concerning the rectilinear oscillations of a rigid spheroidal inclusion embedded in
an elastic medium. In this particular paper we examine the asymmetric rotary oscillations of a
disc shaped rigid inclusion embedded in bonded contact with an isotropic elastic medium of
infinite extent (Fig. 1). The asymmetry of the deformation enables the reduction of the problem
to a mixed boundary value problem associated with a halfspace region which is solved by
means of integral transform techniques. Using a standard procedure, the problem is reduced to
a Fredholm integral equation of the second kind which is solved in an approximate manner.
Numerical results for the dynamic rotary stiffness of the embedded rigid disc inclusion are
presented for a range of frequencies of practical interest.

2. SOLUTION

We consider the asymmetric deformation of the infinite space induced by the rotational
oscillation of the bonded disc inclusion. The problem is antisymmetric in the normal stress O'zz,
the radial displacement u, and the azimuthal displacement U9, about the plane z =0, in the
region r ~ a for all t ~ O. Also, since the rigid disc inclusion is bonded to the elastic medium. u,
and UB are zero in the region z = 0, r ::; a. Thus, we may restrict our attention to the analysis of
a single halfspace region (z ~ 0) of the infinite space in which the plane z =0 is subjected to the
mixed boundary conditions

u,(r, 8,0+, I) = uB(r, 8,0+. I) =0; r ~ 0

uz(r, 8,0+, t) = lfJr eiwt cos 8;

O'zz(r, 8, o+, I) = 0; a < r<oo.

(I)

(2)

(3)

In addition, the displacement field should satisfy the radiation conditions appropriate for an
infinite space region (see, e.g. Kupradze[15] and Eringen and Suhubi[16]). By making use of
integral representations for the linear elastic equations of motion given by Bycroft[l], the
boundary conditions (l}-(3) can be reduced to a system of dual integral equations. This dual
system can be further reduced (see, e.g. Noble[17]) to a single Fredholm integral equation of
the second kind

I II'1'(1) +- R(t, T)'I'(T) dT =2t
7T 0

for the unknown function 'I'(t). The function R(t, T) is given by

where

2 2 2 2
h2= p(jiJ) a . k2=~

(A +21J.)' IJ.'

(4)

(5)

(6)

(7)

(8)

Po is the equilibrium density and A and IJ. are isentropic Lame's constants. The analysis of the
embedded inclusion problem is reduced to the solution of the integral eqn (4). In the present
paper we are primarily interested in evaluating the dynamic rotational stiffness of the embedded
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disc inclusion. It can be shown that the total torque acting.oD the embedded inclusion is given
by

M(t)=32"'/:La
3
(l-II)e

iWI
(' t'V(t)dt.

(3 - 411) Jo

Alternatively, by denoting the integral in (9) by fJ t'V(t) dt = 1/1, + ;1/12 it can be shown that

(9)

(10)

where tan X =1/1111/12. In the statical case we have w =0; as a consequence 1/1. =2t and 1/12 =0
and the expression (10) reduces to

(11)

This result is in agreement with the expressions obtained by Kanwal and Sharma[18] and
Selvadurai[19] for the static moment-rotation response for the embedded disc inclusion by
making use of singularity methods and integral equation techniques respectively. The formal
analysis can now be extended to include the effects of self weight of the embedded inclusion. In
this particular instance, a rigid circular disc inclusion of mass m embedded in bonded contact
with an elastic medium of infinite extent is subjected to a periodic rotation ",eiool

• The
relationship between'" and the maximum amplitude T* of the periodic couple T(t) required to
maintain the steady oscillation is given by

(12)

where I:! = m(l - v)/4poa 3 is the mass ratio.

3. APPROXIMATE SOLUTION OF THE INTEGRAL EQUATION

For the solution of the integral eqn (4) we adopt a technique similar to that used by
Robertson [20], Gladwell [3] and others for the analysis of equivalent forced vibration problems
associated with a halfspace region. Avoiding details of calculation it can be shown that 1/11 and
"'2 can be expressed in the forms

(13)

(14)

where

(15)

and

2 (1- 2v)
'Y = (2-2v)'
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Fig. 2. Variation in the normalized dynamic rotational stiffness with non-dimensional frequency.

(16)

4. NUMERICAL RESULTS
In this section we present some numerical results which illustrate the manner in which the

dynamic rotational compliance of the embedded rigid disc inclusion is influenced by the mass
ratio (~) and the non-dimensional frequency k .The approximate analytical relationship used
for this purpose is given by eqn (12) where "'I and 1/12 are defined by (13) and (14) respectively.
Figures 2-4 illustrate typical variations in the normalized dynamic rotational stiffness (OR)disc
which is obtained by making use of the result (12) for the dynamic rotational stiffness and the
static equivalent defined by (11); i.e.

2

2.0 r------------r---,r-----rr---,

----------
1.0

6 0 0

I'" 00.31 sphere
disc;

0
0 02 0.4 0.6 08 1.0

k

Fig. 3. Variation in the normalized dynamic rotational stiffness with non-dimensional frequency.
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Fig. 4. Variation in the normalized dynamic rotational stiffness with non-dimensional frequency.

It is of interest to examine the correlation between the above approximation for the steady
oscillation of the embedded disc inclusion and the equivalent result for the steady oscillation of
a rigid sphere embedded in bonded contact with an elastic medium of infinite extent. The exact
solution of the latter problem is given by Chadwick and Trowbridge [10]. A rigid sphere of mass
m and radius a is subjected to a periodic rotation <1>. ei

..,. The relationship between <1>. and the
maximum amplitude <n) of the periodic force required to maintain the steady oscillation can
be represented in the normalized form

(17)

and the static moment (no) rotation relationship is given by

(18)
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